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Abstract-A perturbation analysis is made for the study of the effect of dike intrusion on free convection in 
unconfined conduction-dominated geothermal reservoirs. The perturbation equations are of elliptic type 
that can be solved numerically by the finite difference method. Up to the second-order approximations are 
retained in the numerical computation. The effects of dike intrusion on streamlines, temperature distribution, 

and the shape of water table in a two-dimensional volcanic island aquifer are shown. 

NOMENCLATURE 

D = p,Kgh/up; 

function denoting the position of water 
table ; 
gravity vector ; 
depth of the reservoir at the ocean sides; 
thermal conductivity of the formation ; 
permeability of the formation ; 
the width of the reservoir; 
the dimensionless width of the reservoir, 
L E l/h; 

dummy index in equation (10); 
unit vector normal to water table; 
pressure ; 
dimensionless pressure, P E (p - p,)/p,gh ; 

P,, P,,first-order and second-order perturbation 
functions for pressure ; 
temperature; 
temperature of the dike ; 
prescribed temperature of the impermeable 
surface ; 
Darcy’s velocity in the x and y 
directions; 
Cartesian coordinate system; 
dimensionless coordinates. 

Greek symbols 

equivalent thermal diffusivity, 
a = k/W,!, ; 
thermal expansion coefficient ; 
perturbation parameter, E = p( T, - T,) ; 
the height of water table ; 
dimensionless height of water table, 
tj = q/h; 

ql, q2, first-order and second-order perturbation 
functions for the height of water table; 

8, dimensionless temperature, 
0 z (T- T,)f(K.- T,); 

B,,, 8,, &, zero-order, first-order and second-order 
perturbation functions for temperature; 

e d, prescribed dimensionless temperature of the 
dike ; 

e L7 prescribed dimensionless temperature of the 
impermeable surface; 

L4 viscosity of convecting fluid ; 

P, density of convecting fluid ; 

$T stream function ; 
Y’, dimensionless stream function, 

Y’ = /4/p&K; 
‘PI, Y *, first-order and second-order dimensionless 

stream functions. 

Subscripts 

a, atmospheric condition; 
s, condition in the ocean. 

INTRODUCTION 

MAGMATIC intrusion occurs frequently in the Earth’s 
crust where there are intense tectonic or volcanic 
activities. The intruded magma then acts as a heat 
source which in turn heats the ground-water in the 
aquifer. The heated ground-water is driven buoyantly 
upward to the top of the aquifer where it can then be 
tapped for power generation through drill holes. A 
qualitative assessment of the capacity and location of 
geothermal resources can sometimes be made from the 
observation of temperature anomaly in a rock for- 
mation or heat flux anomaly on the Earth’s surface. A 
thorough understanding of heat-transfer characteris- 
tics in the Earth’s crust thus will aid in a correct 
interpretation of field data during geophysical explo- 
ration. 
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The intrusive magma may take many different forms 
or sizes. A sheet-like intrusive body is called a dike or a 
sill depending upon whether it is perpendicular or 
parallel to the stratification in the bedded rocks. On 
the basis of the heat-conduction theory, Horai [l] has 
recently completed a study to relate surface heat flux to 
the parameters specifying the intrusion such as mag- 
matic temperature, geometry, and dimensions of the 
intrusive body. However, recent studies [2-41 suggest 
that the convection of ground-water plays an impor- 
tant role on the heat-transfer characteristics in geo- 
thermal areas. Thus, in the present paper, we shall 
study the effects of dike intrusion on the temperature 
distribution in an island aquifer (Fig. la) taking into 
account the movement of ground-water. To simplify 

Thermal source 

FIG. I(a). An unconfined aquifer in a volcanic island with 
dike intrusion. 

the problem, the dike is idealized as a vertical im- 
permeable rectangular obstacle while the island aqui- 
fer is idealized as a two-dimensional homogeneous and 
isotropic porous medium bounded vertically by ocean 
on the sides, with horizontal impermeable surface at 
the bottom, and unconfined at the top where the 

Y 

,p=pa, T=To. J.fi*0 

FIG. l(b). Idealized model of a geothermal reservoir with 
dike intrusion. 

position of water table is not known a priori (Fig. lb). 
Exact numerical solution of the problem is difficult 
since the convergence of the solution is very sensitive 
to the position of the water table [S, 61. For a 
conduction-dominated geothermal reservoir, ho- 
wever, a perturbation method can be used to appro- 
ximate the non-linear problem by a set of linear sub- 
problem that can be solved by finite difference method 
[2]. Contours for streamlines and temperature distri- 
bution, as well as the amount of the upwelling of water 
table as a result of dike intrusion for a particular set of 
parameters are presented. 

Governing equations and boundary conditions 
The governing equations for the simultaneous heat 

and mass transfer in a porous medium are the 
continuity equation, Darcy’s law, energy equation, and 

equation of state. To simplify the formulation of the 
problem, we assume that: 

5. 

6. 

The flow field is steady and two-dimensional. 
There is no rainfall at the water table. 
The temperature of the fluid, T, is everywhere below 
boiling for the pressure, p, at that depth. 
The fluid properties such as specific heat, C, and the 
kinematic viscosity, ,u, as well as the medium 
properties such as thermal conductivity, k, and 
permeability, K, are all constant. 
Density, p, is linearly proportional to temperature, 
i.e. p = p,[l -P(T-- T,)] where /? is the thermal 
expansion coefficient and the subscript “s” denoting 
the condition in the ocean. 
Boussinesq approximation is employed, i.e. density 
is assumed to be constant except in the bouyancy 
force term. 

With these assumptions it can be shown that the 
governing equations in terms of dimensionless pre- 
ssure, P, and temperature, 8, are [2] 

a2p a2p a0 
~+&FT=ygT (1) 

2 2 
g+g+Ll 

ill 
ap ae ap ae 
axax+auau 1 

+ [l -&e]E 
I 

= 0, (2) 

where 

pEp-Pa T-T _ eE_._...5 

p,gh ’ K-T,’ 

Mgh 
E=/?(T~-T,), and DE- 

a/J ’ 
(3) 

with h and l-denoting the depth and the width of the 
aquifer, g the gravitational acceleration, and CL z 
k/(pC)s the equivalent’ thermal diffusivity. The sub- 
script “c” denotes the maximum temperature on the 
impermeable surface. 

The dimensionless boundary conditions along the 
ocean are 

where equations 

P(0, Y) = 1 - Y) (da) 

P(L, Y) = 1 - Y) (4b) 

@(O,Y)=O, (4c) 

B(L, Y) = 0, (4d) 

(4a) and (4b) denote hydrostatic 
pressure and (4~) and (4d) denote constant tempera- 
ture along the ocean sides. 

Along the water table Y = q, the dimensionless 
boundary conditions are given by 

P(X,yJ)=O, (5a) 

0(X, $ = e,, (5b) 

~~(X,?)-~~(X,Io+l--E~~)=O, (5c) 

where rj z q/h, and 0, G (T, - T,)/(T, - T,) with T, 
denoting the atmospheric temperature. It is worth 
mentioning that boundary condition (5~) follows from 
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the conditions fi.ti = 0 where 6 is the unit vector expanded in a power series of E. Thus, we have 
normal to the water table which is given by ii 
= VF/(VFI with F(X, Y) = Y -ij(X) = 0 denoting the e(x, Y) = 2 &me,(x, Y) , (104 
equation for the position of the water table [2]. m=O 

If a vertical impermeable dike with uniform tem- 
perature Td is located between X, and X2 on the P(X, Y) = (1 - Y) + f E~PJX, Y), (lob) 

impermeable surface (Fig. lb), the dimensionless 
PPl=r 

boundary conditions along the dike are Jlw, Y) = f EV,(X, Y), (lh) 
0(X,, Y) = (3(X,, Y) = tId, 0 G Y < Y, (6a) m=l 

Q(X, Y,) = e,, x, Q x G x, (6b) ri(W = 1 + 2 Em&#(X), UOd) 
m=l 

j$X,,Y)=~(X,,Y)=O, O<Y<Y, (6c) where P,W, 0, 4,,K Y), Jl,(X, Y) and q,,(X) are 
perturbation functions to be determined. Substituting 

$x, Y,) = -l-t&&, 
equation (10) into equations (l)-(9), making a 

x, <x<x, (6d) Taylor’s series expansion on boundary conditions (5) 
and collecting terms of like power in E, we have the 

where 0, = ( Td - T,)/( T, - T,). It should be noted that following set of subproblems. 
equations (6~) and (6d) follow from Darcy’s law and 
the fact that velocity normal to the surface of the dike Zero-order approximations 

vanishes. Similarly, if temperature on the rest of the The zero-order problem for 0 is given by 

horizontal impermeable surface is prescribed, the 2 2 

boundary conditions are given by g+g$o, (11) 

0(X,0)=0,,(X), OGXZZX, and X,<X<L with boundary conditions given by 

Pa) eo(o, Y) = eo(L, Y) = 0, (124 

E(X,O)= -1 eo(x, 1) = e,, Wb) 

+se,,(X), 0 G X G X, and X, <X &t. 
eo(x, o) = e,(x), WC) 

eo(x,, y) = eo(x2, y) = e,, for 0 G Y G Y, , 
(7b) U2d) 

Equations (1) and (2) with boundary conditions 
(4)-(7) are a set of non-linear partial differential 

es(x, Y,) = e,, for x2 G x G x, . (12e) 

equations with non-linear boundary conditions for the First-order approximations 
determination of pressure and temperature in a hot- The first-order problem for P is given by 
water aquifer with a vertical dike. 

After 0 is obtained, the dimensionless stream fun- 
a2p, a+, ae, -- (13) 

ction I/J = $l’/p,ghK can be determined from ax2 + ay2 =z’ 

aZ* a”* 
z+w= -g9 

where the RHS of equation (13) is known from the 

(8) zero-order problem. The boundary conditions for P, 
are given by 

where equation (8) is obtained from the elimination of P,(O, Y) = PI(L, Y) = 0, (14a) 
pressure in Darcy’s law and from the definition of the 
stream function, i.e. II = aY/ay and v = - aY’/ax. The 2(x, I) = e,, (14b) 
boundary conditions for JI along the ocean are given 

by ~(~0) = e,,(x), (14c) 

2 (x~~ Y) = 2 (X2, Y) = 0, for 0 < Y < Y, 

i.e. the vertical velocity is zero along the ocean (14d) 
implying that e,(X) = 0 as X + 0 and X + L. Along 
the water table, the impermeable surface, and on the z(x,Y,)=8,, for x, 5zxxx2. We) 

dike, the boundary condition for JI is Once P, is determined, nl(X) is obtained from 
$=O. (9b) rl,m = p,w, 1). (15) 

which follows from equation (5a). 

Perturbation analysis 
The first-order approximation for 0 is 

If the value of E in equations (6)-(g) is small, we can a28, a2e, _-+-=-~ aP,dB,+ r mae,_, ae, 
axax iEau 

, 
obtain a perturbation solution to the problem. For this Oay 1 
purpose, we now assume that dependent variables be (16) 
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with boundary conditions given by 

0,(0, Y) = f?r(L, Y) = 0, (t7a) 

0,(X,0) = 0, (17b) 

Qt(X, 1) = -P,(X, 1)$(X. l), (17c) 

0,(X,, Y) = 0,(X,, Y) = 0, for 0 Q Y ,< Y,, 
(17d) 

B,(X,Y)=O, for X, ,<X<Xxz. (17e) 

The first-order approximation for IJ is given by 

(18) 

with boundary conditions given by 

$(O,Y)=$,Y)=O, 

$I(x,l)=$,(.x,O)=O, 

and $, = 0 along the surface of the dike. 

(19a) 

(f9b) 

Second-order approximations 

Second-order approximation for pressure is given 

by 
a*p2 a*P2 de, 
p+ayz=ay’ (20) 

with boundary conditions given by 

P,(O, Y) = P,(L, Y) = 0, 

$(X,0)=0, 

2(X, Y,) = 0, x, <- x<x*. WeI 

The second-order approximation for temperature is 
given by 

ap, ae, ae, 
+ay=-bay 1 1 (22) 

with boundary conditions given by 

0*(0, Y) = B*(L, Y) = 0, (23a) 

0,(X,0)= 0, G-1 

f32w, 1) = -Il,>(X, 1) 

-s23X, 1)-4:$X, l), WC) 

B2(X,, Y) = B2(X,, Y) = 0, 0 < Y < Y,, (23d) 

e,(x,Y,)=O, x, <XXX* (23e) 

where 9 1 is given by equation (15) and 

v2 = P,(X, l)+P,(X, 1)$+(X, 1). (23f) 

The second-order approximation for ti2 is given by 

aZ*, a%j2 (76, 
--+%=-ax' ax2 (24) 

with boundary conditions given by 

~(L,Y)=~(O,Y)=O, (25a) 

IcI*(X,O) = 0, 

$2(X, 1) = -h$X, 1x 

$2(X,, Y) = 42(X,, Y) = 0, 0 d Y < Y, (25d) 

$*(X,Y,)=O, x, <xxx*. (25e) 

The governing equations for the zero-, first- and 
second-order problems as given by equations (111 
(13), (16), (18), (20), (22) and (24) are either the Laplace 
equation or Poisson equation with nonhomogeneous 
boundary conditions, which could have been solved in 
closed form by a separation of variables. Since the 
numerical evaluation of the resultant expressions in 
terms of many double and triple Fourier series will be 
very costly, we therefore resort to the numerical 
solution of the problem by the finite difference method. 

NUMERICAL COMPUTATION AND RESULTS 

The Laplace operators in equations (ll), (13), (16), 
(18), (20), (22) and (24) are approximated by the 
standard five-point formula of the finite difference 
method, while the derivatives in the boundary con- 
ditions for these equations are approximated by the 
central difference scheme. Computations begin with 
the determination of B,,, and in the order of P,, B,, I), , 
P,, f12 and tj2 so that the derivatives in the non- 
homogeneous terms of the equations for each subpro- 
blem is solved numerically by the Gauss-Seidel iter- 
ation method. Computations were carried out up to 
the second-order approximation for D = 500 (upper 
bound for which the perturbation method is valid) 
with L = 4, E = 0.1 and (?a = 0.02 for the following 
three cases with different prescribed temperatures of 0,, 
and Or. 

Case A: Heatingfiom a hot dike 
For the problem of geothermal heating due to a hot 

dike 0.5 unit in height and 2 units in width located at 
the center of the aquifer with a cold impermeable 
surface at the bottom, the prescribed temperatures are 

ed= I, 1.9 < X 6 2.1 and 0 d Y < 0.5 

O,(X) = 0, 0~X~1.9 and 2.1 <X<4. 

Case B: Heating from below 
For comparison, computations were also carried 

out for a geothermal reservoir without a dike, but with 
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FIG. 2. Effects of vertical and horizontal heating on stream- 
lines in an unconfined geothermal reservoir. 

FIG. 3. Effects of vertical and horizontal heating on tempera- 
ture contours in an unconfined geothermal reservoir. 

geothermal heating from the bottom impermeable 
surface having the following prescribed temperature 

Case C: Combined heating 
Heating in this case is due to the combination of a 

vertical dike located at the center of the reservoir as in 
Case A, and the hot impermeable surface as in Case B. 
The prescribed temperatures for the heat sources are 

ed= 1, 1.9 < X < 2.1 and 0 < Y < 0.5 

R,,(X)=exp[-[g)Zj, 0~X~1.9 and 

2.1 < x < 4.0 

.” 

I D’500 

c=o.1 
0.8 

0 
1 

04 0.6 1.2 I.6 2.0 2.4 2.6 3.2 3.6 4.0 

X 

FIG. 4. Horizontal temperature distribution for Cases A, B and C. 

D=SOO 
c=o.1 

a Y=O.4 

DO 4 .a 1.2 1.6 2.0 2.4 2.6 3.2 3.6 1 3 

X 

FIG. 5. Vertical velocity profiles at Y = 0.4 for Cases A, B and C. 

Results of Cases A, Band C are plotted in Figs. 2-6. 
Both the flow pattern and temperature contours are 
symmetric with respect to X = 2. For clarity, however, 
only I) = 0.001 and $ = 0.0004 are plotted in either 
side of the aquifer as shown in Fig. 2. The streamlines 
for the three cases exhibit similar behavior with cold 

0.0 IL) 20 3.0 4.0 
X water moving inland in the lower portion of the island 

FIG. 6. Effects of heat sources on the upwelling of water table aquifer and warm water discharging into the ocean in 
for Cases A, B and C. the upper portion of the aquifer. Near the heat sources, 

HMT Vol. 20, No. 11-H 
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a column of hot fluid rises rapidly which induces two 
convective cells on either side of the heat sources. 
When a hot dike exists in the reservoir, the heat source 
becomes relatively close to the water table. This, plus 
the fact that the dike provides a larger area for heat 
transfer, makes it a possibility that hot water can be 
found at shallow depths, as is shown in Fig. 3. The 
horizontal temperature distributions at Y = 0.2 and Y 
= 0.4 for Cases A, B and C are plotted in Fig. 4, where 
it is shown that the rate of change in temperature is 
rapid at the region pear the heat source. This boundary 
layer behavior in temperature distribution is most 
pronounced for Case A. It is of interest to note that the 
vertical velocity distribution (Fig. 5) and the tempera- 
ture distribution (Fig. 4) are similar in shape, and that 
“velocity slip” occurs on the impermeable surface. The 
effects of vertical and horizontal heating on the 
amount of upwelling of water table are shown in Fig. 
6-it can be seen here that upwelling of water table 
increases if a hot dike exists. 

CONCLUDING REMARKS 5. 

The present perturbation method is valid only for 
small E as well as for small and moderate values of D 
which is applicable to conduction-dominated re- 
servoirs. For large values of D, the solution will break 

6. 

down in the region near the heat source as well as 
directly above the heat source where convection is 
predominant. 
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L’EFFET DE L’INTRUSION DE DIGUE SUR LA CONVECTION NATURELLE DANS 
LES RESERVOIRS GEOTHERMIQUES DOMINES PAR LA CONDUCTION 

R&me-Une analyse de perturbation est conduite pour le transfert simultanC de chaleur et de masse 
dans les r&ervoirs gkothermiques non confmts, dominCs par la conduction et avec une intrusion de digue. 
Les tquations aux perturbations sont du type elliptique et elles peuvent &tre rtsolues numtriquement 
par la mCthode aux diffkrences finies. Dans le calcul numkrique, les approximations du second ordre 
sont retenues. On montre les effets,de I’intrusion de Ligue sur les lignes de courant, sur la distribution de 

temptrature et sur la forme de la table d’eau dans les nappes aquiferes bidimensionnelles. 

DER EINFLUSS DER DEICH-INTRUSION AUF DIE FREIE KONVEKTION 
IN LEITUNGSDOMINIERTEN GEOTHERMISCHEN RESERVOIRS 

Zusammenfassung-Der gleichzeitige WBrme- und Stoffiibergang in unbegrenzten, leitungsdominierten 
geothermischen Reservoirs bei Deich-Intrusion wird mit Hilfe der StrBmungs-Analyse bestimmt. Die 
Gleichungen sind vom elliptischen Typ und kdnnen nach der Methode finiter Differenzen gelast werden. 
Dabei werden NBherungen bis zu zweiter Ordnung erhalten. Die Einfliisse der Deich-Intrusion auf den 
Verlauf von Stromlinien und Temperaturen sowie auf die Form des Wasserspiegels in zwei-dimensionalen 

Aquifer-Speichern werden gezeigt. 

BJIllRHME AAfiKOBOfi RHTPY3MLI HA CBOBOAHYIO KOHBEKL@iIO B 
TEOTEPMAJIbHbIX PE3EPBYAPAX B YCJIOBHRX ITEPEAAYW TEI-IJIA 

TEI-IJ-IOI-IPOBO~HOCTbIO 

ABHoTaunn - MeTOAOM B03MylqeHd aaanw3npyercrr npouec; onHoepeMemror0 nepeHoca Terma A 
MaCCbl B IEOrpaHHYeHHblX ROTepMaAbHbIX pe3epByapaX C AaiiKOBOti HHTpy3Hefi B ~CJIOBHXX nepe- 
IIaYH TeIIIIa TeIUlOnpOBOAHOCTbH3. YpaBHeHHR AJIll B03MyIUeHdi 3allSiCaHbI B 3JIJIHnTkiYeCKOM BHAe 

H MOryT 6bITb peIIIeHb1 YHCJleHHO C IIOMOUIbEO MeTOAa KOHeYiiblX pa3HOCTefi. YHCJIeHHaa CXeMa 

wena BTOPOB nopaAoK annpoKcsiMaumf. OnHcaHo BjmsHsie AatiKoeoilmiTpy3~~ Ha nmimi ToKa, 
TeMnepaTypHOe PaCnpeAeAeHFie U @OpMy BOWOft nOE%pXEIOCTIi AJlR AByXMepHbIX BOAOHOCHbIX 

nnacToa. 


